
CoMRAT:
Commit Message Rationale Analysis Tool

Mouna Dhaouadi
DIRO, Université de Montréal

Montréal, Canada
0000-0001-9336-7714

Bentley James Oakes
GIGL, Polytechnique Montréal

Montréal, Canada
0000-0001-7558-1434

Michalis Famelis
DIRO, Université de Montréal

Montréal, Canada
0000-0003-3545-0274

Abstract—In collaborative open-source development, the ra-
tionale for code changes is often captured in commit messages,
making them a rich source of valuable information. However,
research on rationale in commit messages remains limited. In
this paper, we present CoMRAT, a tool for analyzing decision
and rationale sentences rationale in commit messages. CoMRAT
enables a) researchers to produce metrics and analyses on
rationale information in any Github module, and b) developers
to check the amount of rationale in their commit messages. A
preliminary evaluation suggests the tool’s usefulness and usability
in both these research and development contexts.

Index Terms—rationale analysis, code commit messages,
Github repository mining, Linux kernel analysis

I. INTRODUCTION

Reporting the rationale behind a proposed code change is
a necessary practice in collaborative open-source projects. In
modern software development, where developers rely on ver-
sion control systems such as Git, rationale information is often
documented in the commit messages [1]. Although researchers
have previously attempted to develop an understanding of
developers’ rationale in open source software by studying chat
messages [2] or email archives [3], research about rationale
characteristics in the code commit messages of open-source
projects is rather limited [4]–[6]. Tian et al. [4] and Li et al. [5]
reported analyses regarding the quality of commit messages in
terms of what and why information based on only five open
source projects, while our earlier work examined developers’
rationale specifically for the Out-Of-Memory Killer (OOM-
Killer) module of the Linux Kernel [6].

We present CoMRAT, a Commit Message Rationale
Analysis Tool for studying developer’s rationale in the commit
messages of any open source Github project. CoMRAT is a
web application that includes: a) a Module Analyzer for char-
acterizing developer rationale in terms of its presence, impact
factors, evolution and structure, and b) a Commit Message
Analyzer for promoting rationale-providing commits. A pre-
liminary evaluation suggests CoMRAT’s usefulness (RQs.1,3)
and usability (RQs.2,4) for researchers and developers.

II. BACKGROUND

A. The OOM-Killer dataset
The Linux kernel is an extensive open-source project that

has been developed collaboratively since 1991. Since 2005,

This research work is funded by the Fonds de Recherche du Québec (B2X).

Linux code patches have been organized as Git commits.
Linux developers are encouraged to explain the motivation
behind the commit and its impact on the kernel [7]. This
community practice makes the kernel commits a valuable
source of rationale information [1]. The Linux project has
several sub-projects that focus on different areas of the ker-
nel, e.g., the ‘mm’ folder contains code that focuses on
memory management, the ‘fs’ folder code for filesystems,
etc. Each sub-project contains several modules. For instance,
the ‘mm’ sub-project contains the modules ‘oom kill’, ‘slob’
and ‘migrate’. As these modules have different concerns and
committers, we treat each one as their own individual project.

In our previous work, we created an annotated, high-
quality rationale dataset for the OOM-Killer module [6]. We
categorized sentences as Decision (an action or a change
that has been made), Rationale (the reason for a decision or
value judgment), and Supporting Facts (narration of facts used
to support a decision), and then quantitatively analyzed the
resulting dataset to characterize rationale in this subsystem.
The next section details the analyses from [6] as implemented
in CoMRAT. Section III illustrates them with an example.

B. Rationale Analyses

The first set of analyses report on the presence of rationale
in commit messages. We consider that a commit contains
rationale if at least one of its sentences is labelled as
Rationale. Specifically, we answer “How many commits
contain rationale?” by introducing the rationale percentage
metric and “How much of the commit contains rationale?”
by introducing the rationale density metric, as follows:

rationale percentage = number of commits that contain rationale
total number of commits

rationale density = number of sentences labelled as Rationale
total number of sentences in a commit

We also define the average rationale density for a
specific module as follows:

average rationale density =
∑

commits rationale density
number of commits that contain rationale

The second set of analyses concern the possible factors
impacting rationale, specifically the potential dependencies
between the size of the commit and the developers experience,

ar
X

iv
:2

50
6.

10
98

6v
1 

 [
cs

.S
E

] 
 2

7 
Fe

b 
20

25



and the rationale density. To answer “Does the quantity of
rationale reported depend on the commit message size?”,
we visualize the rationale density values versus the commit
message size (i.e, number of sentences in a commit). To
answer “Does the quantity of rationale reported depend on
the developer experience?”, we visualize the average rationale
density per author (i.e, we compute the mean of the rationale
density of the commits of each author), along with the number
of commits per author, as we consider the number of commits
authored an indication of the developer’s experience.

For rationale evolution, we answer “How does rationale
evolve over time?” by visualizing the evolution of the average
rationale density and the average decision density (calculated
based on the decision-containing sentences) per year.

The final set of analyses concerns the structure of a commit
message. That is, what sentence category order developers
prefer when elaborating their commit messages. To answer “In
what order do the categories mostly appear?”, we visualize
the distribution of the identified categories over the normalized
positions of the sentences of the commit messages.

C. Rationale Extractors

In other work, we trained two binary BiLSTM classi-
fiers on the OOM-Killer dataset (one for Decision-containing
sentences and one for Rationale-containing sentences), and
applied them on two different Linux modules: the slob.c1

module of the mm component and the button.c2 module of the
drivers/acpi subproject, and five other open source projects.
We then validated their generalizability to these new contexts.

III. COMRAT DESIGN, IMPLEMENTATION AND USAGE

We combine our previous implementation of the rationale
analyses of the OMM-Killer module with our Bi-LSTM binary
classifiers to make the analyses available for any Github
project. Having validated the generalizability of the extractors,
we can apply them to other open source modules. In CoMRAT,
we implement two analyzers that leverage the classifiers:
a Module Analyzer, and a Commit Message Analyzer. The
Module Analyzer allows the user to apply the analyses defined
above for a specific module. The Commit Message Analyzer
enables the user to enter a commit message and evaluate
its quality. Our tool is packaged as a web application with
two pages. The only prerequisites to its usage are a Github
Username and a Github API token.

A. CoMRAT Module Analyzer

For the Module Analyzer, we implement the following
workflow: 1) The user enters the Github API URL of a specific
module, then clicks the Start Module Analysis button. 2) The
analyzer downloads the commit messages through API calls.
3) The extracted messages are pre-processed similarly to the
the training dataset of the classifiers. 4) The tool applies the
classifiers on the pre-processed commit messages.

1https://api.github.com/repos/torvalds/linux/commits?path=mm/slob.c
2https://api.github.com/repos/torvalds/linux/commits?path=drivers/acpi/

button.c

The output is a set of sentences labelled as Decision
and/or Rationale. The tool also shows information about the
distribution of the categories, and generates wordclouds from
the most prominent words in each of the categories (without
considering multi-labelled sentences). Note that when running
the code locally, users can augment the built-in list of stop
words of the wordcloud library3 with specific module-related
keywords for better representations. Finally, the tool analyzes
the labelled dataset: it computes the metrics and generates the
figures. Optionally, the user can download the labelled dataset
as a CSV file, or the generated figures as PDF files. Fig. 3
shows the output relating to the slob.c module.

B. CoMRAT Commit Message Analyzer

Here, the user inputs a commit message and clicks the
“Start Commit Analysis” button. CoMRAT pre-processes the
message, applies the classifiers, and outputs its sentences,
labelled as Decision and/or Rationale. It also reports the
number of sentences, the rationale density and the deci-
sion density of the commit message. If the rationale density
is below the threshold of 0.5, a warning message appears. If
higher, a success message appears. Note that we are conduct-
ing further research to better determine this threshold value.

C. Limitations

CoMRAT is limited by GitHub’s API hourly rate limit (5000
authenticated requests per hour). This can be problematic for
projects with longer commit histories, but can be overcome
by upgrading to GitHub Enterprise. A second limitation is
the non-optimal pre-processing we use [6]. In fact, due to
improperly formatted commit messages, it is likely that the
preprocessing may have been inaccurate or ineffective (e.g.,
not skipping blocks of raw source code from the message).
A third limitation is that we only consider commit messages,
and not additional sources for rationale, such as issues [8] or
bug reports [9], [10]. This would require more downloaded
data and further execution time.

D. Installation and local execution

CoMRAT is built with Python 3.11 and Streamlit4 and
only needs specific libraries installable through pip in order
to work. The source code is publicly available [11]. To
install, users can download the source and, navigating to the
Rationale-Analyses-Tool folder, create a virtual environment
to install the required libraries and run the tool locally:

pip install -r requirements.txt
streamlit run tool.py

E. Potential Uses

The Module Analyzer could be used to create datasets of
commits with rationale from open source Github projects,
unearthing valuable rationale knowledge that could be reused
in future development projects. In industrial settings, this

3https://amueller.github.io/word cloud/
4https://streamlit.io/

https://api.github.com/repos/torvalds/linux/commits?path=mm/slob.c
https://api.github.com/repos/torvalds/linux/commits?path=drivers/acpi/button.c
https://api.github.com/repos/torvalds/linux/commits?path=drivers/acpi/button.c
https://amueller.github.io/word_cloud/
https://streamlit.io/


The mm/slob.c module

Resulting dataset:

% preview of the labelled dataset

Number of commits: 146
Number of sentences: 833

Distribution

Decision only sentences: 233
Rationale only sentences: 162
Decision & Rationale sentences: 252
No Decision and No Rationale sentences: 186

Word Clouds

Rationale Presence

Total Number of commits: 146
Number of commits that contain rationale: 124
Rationale Percentage: 84.93%
Average Rationale Density: 0.56

Rationale Factors

0 10 20 30 40
Commit message size (Number of sentences)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
na

le
 D

en
si

ty

Number of commits
1
2
3
4
5
6
7

8
9
10
11
12
13
14

0 5 10 15 20 25 30
Number of commits per author

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

R
at

io
na

le
 D

en
si

ty

Number of authors
1
2
3

4
5
7

Commit Message Structure

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized position of the sentence in the commit message

0

20

40

60

80

100

120

N
um

be
r o

f c
om

m
its

Decision
Rationale

Rationale Evolution

2007.5 2010.0 2012.5 2015.0 2017.5 2020.0 2022.5
Time (years)

0.4

0.5

0.6

0.7

Av
er

ag
e 

D
en

si
ty

Average decision density
Average rationale density

Fig. 3: CoMRAT analyses for the slob.c module

would enhance decision-making and productivity. Structural
analysis may reveal structural patterns and identify common
commit messages structures that could be used as guidelines
or encouraged via automated tools. In development contexts,
this would ensure well-structured commit messages, or suggest
improvements before merging commits. For example, the
Commit Message Analyzer allows the user to evaluate the
quality of their commit message, e.g., by scoring their commit
information against the module to which they are contributing
to. This ensures that a desired level of rationale information is
obtained, which is particularly valuable in open source projects
for onboarding newcomers and retaining design information.

The Module Analyzer could also be used by researchers
for in-depth investigation of the rationale in Github projects.
Subsequent studies could reuse the research questions in
Section II-B or include a comparison between modules in
terms of rationale information. For instance, Table I shows
the rationale percentage and the average rationale density for
five Linux modules, suggesting stable rationale distribution
and generalizability of prior findings from the OMM-Killer
module [6]. The generated datasets could also support future
research on how developers express their rationale, or regard-
ing other factors influencing rationale in commit messages,
e.g., the number of reviewers or the author’s affiliation.

IV. PRELIMINARY EVALUATION

We conducted a preliminary evaluation of CoMRAT to
assess usefulness (RQs.1,3) and usability (RQs.2,4). Complete
materials / anonymized data are in a replication package [11].

A. Module Analyzer

a) Usefulness (RQ.1): To get an expert evaluation, we
asked a Software Engineering researcher with more than 10
years of experience to test the Module Analyzer. Then, we
asked him to fill a form that contains a Likert scale about the
usefulness and the usability of the tool overall, and six rating
questions (with a scale of 1 to 5 stars) about the usefulness
of each of the analyses. The researcher Strongly Agreed that
the labelled dataset and the generated analyses are useful for
researchers, with a minimum of four stars of five for the six
analyses. He rated the Word Clouds analysis with 2/5 stars as
he found the images were informative but could not be reused,
and suggested frequency tables instead. He also described the
kinds of research that might benefit from CoMRAT:

“Many types of MSR papers could benefit from
such tools. I can think of using commit messages (with
decisions and rationales) to enhance code review and
bug localization. [..] Automatic bug fixes (or at least
learning from past bug fixes) would also likely benefit.”

b) Usability (RQ.2): The expert researcher Agreed that
the tool is easy to use. We also report in the first three columns
in Table I the execution time required to get the data through
API calls, load and apply the classification models, execute the
analyses, and generate the figures. The time was measured on
a laptop with Intel Core 1.30 GHz and 16 GB of memory. The
results suggest that running CoMRAT locally is feasible.



Module Number of
Commits

Execution
Time

Rationale
Percentage
(%)

Average
Rationale
Density (%)

mm 404 2m 24s 98.9 61.4
slob 146 34s 84.9 56.0

button 110 26s 90.9 61.9
FS 15 13s 86.7 46.5

migrate 666 8m 0s 94.3 63.0

TABLE I: Information about different Linux modules

B. Commit Message Analyzer

We conducted a preliminary user study to evaluate the
usefulness and usability of the Commit Message Analyzer.

Study design. Our study includes a labelling task and a
post-study questionnaire. The first author defined the Decision
and Rationale categories and introduced the sentence-based
labelling task using three commit examples. Then, the partici-
pants were asked to manually label the sentences of six other
commit messages, three with rationale density higher than 0.5
and three lower. The labelling task was carried out to prompt
participants to critically analyze and reflect on the messages.
The first author then introduced the Commit Message Analyzer
and asked the participants to apply it on the six commit
messages. Participants then filled the questionnaire.

Our questionnaire comprises 29 English-language questions.
It includes two multi-choice demographics questions about
participants’ background (current position and experience with
Git development), and four Likert scale questions per commit
about the quantity and helpfulness of rationale information
in the commit and about the tool’s ability to identify that
information and provide helpful feedback messages. Finally,
we include three Likert scale questions about the helpfulness
of the labelling produced by the Commit Message Analyzer as
well as its usability and impact overall.

Participants. To date, we have conducted the study with
five participants with appropriate command of English to
understand the commit messages. We use convenience sam-
pling as we recruit participants from the university we are
affiliated with. Our participants are all graduate students (40%
Master’s and 60% PhD) with a minimum of two years with Git
development. They frequently write commit messages as part
of their academic activities and collaborative research projects.

Initial Study Results.
a) Usefulness (RQ.3): All users (100%) either Agreed or

Strongly Agreed that the tool provides helpful labelling. For
five out of six commit messages, at least 60% either Agreed
or Strongly Agreed that the feedback message was helpful.

b) Usability (RQ.4): All users (100%) either Agreed or
Strongly Agreed that the tool was easy to use, and that it
encourages adding rationale to commits.�
�

�
�

Evaluation Summary. From this initial study, we
claim that CoMRAT is both useful (RQs.1,3) and
usable (RQs.2,4) for researchers and developers.

V. RELATED WORK

Automatically mining developers rationale has recently at-
tracted research interest. Alkadhi et al. experimented with ma-
chine learning models to extract rationale elements (decision,
issue, alternative, pro-argument, con-argument) from devel-
opers’ chat messages [2]. Rogers et al. [10] used linguistic
features while Lester et al. [9] experimented with evolutionary
algorithms to optimize the feature sets to improve rationale
extraction from Chrome bug reports. Sharma et al. tried to
extract rationale from Python Enhancement Proposals using
heuristics [3]. Kleebaum et al. proposed automatic rationale
classification from Jira issues and commit messages using
machine learning [12]. Zhao et al. mined design rationales
from developers discussions in open-source issue logs using
Large Language Models and heuristics. They also investigated
the usefulness of the extracted information for automated
program repair [8]. These prior works differ from us as they
only focus on the extraction and do not analyze developer’s
rationale. Also, none of this prior research has examined the
rationale in open-source commit messages.

Researchers have also studied commit message quality [4],
[5]. Tian et al. define what constitutes a “good” commit
message [4] by studying five open-source projects. They found
that it should summarize what was changed, and describe
why those changes are needed, and proposed a good-message
identification tool. Li et al. [5] continued this research by
considering link contents in addition to the commit messages
while training classifiers for the automatic identification of
good commit messages. They also studied the commit quality
evolution over time, and the correlation between defect prone-
ness and the quality of the commit message.

Similar to us, these researchers considered rationale infor-
mation in the commit messages of open source projects and
proposed analyses that include the temporal evolution aspect
and the factors that influence rationale. Different from us, their
analyses only consider the evolution of the existence of what
(decision) and why (rationale) information over time, while we
study the evolution of their quantities. They also only focus on
the correlation with defect proneness while we study factors
that might influence rationale. Also, they do not consider
the structure (order) in which the what and why information
appear. Finally, previous work does not provide their classifiers
as a tool applicable on any Github module as we do.

VI. CONCLUSION

We present CoMRAT, a tool that a) provides researchers
with labelled datasets and insights about rationale information
in any Github project and b) assists developers in writ-
ing rationale-aware commits. Preliminary evaluation indicates
CoMRAT’s usefulness and usability for researchers and devel-
opers. In the future, we plan to package the Commit Message
Analyzer as a Github Bot to be integrated directly into the
development process, by scoring the rationale information in
pull request commits.



REFERENCES

[1] M. Dhaouadi, B. Oakes, and M. Famelis, “End-to-end rationale re-
construction,” in Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, 2022, pp. 1–5.

[2] R. Alkadhi, J. O. Johanssen, E. Guzman, and B. Bruegge, “React: An
approach for capturing rationale in chat messages,” in 2017 ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM). IEEE, 2017, pp. 175–180.

[3] P. N. Sharma, B. T. R. Savarimuthu, and N. Stanger, “Extracting
rationale for open source software development decisions — a study
of Python email archives,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). Madrid, ES: IEEE, May
2021, pp. 1008–1019.

[4] Y. Tian, Y. Zhang, K.-J. Stol, L. Jiang, and H. Liu, “What makes
a good commit message?” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 2389–2401.
[Online]. Available: https://doi.org/10.1145/3510003.3510205

[5] J. Li and I. Ahmed, “Commit message matters: Investigating impact
and evolution of commit message quality,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). IEEE, 2023,
pp. 806–817.

[6] M. Dhaouadi, B. Oakes, and M. Famelis, “Rationale dataset and analysis
for the commit messages of the Linux kernel out-of-memory killer,”
in Proceedings of the 32nd IEEE/ACM International Conference on
Program Comprehension, 2024, pp. 415–425.

[7] R. Love, Linux kernel development. Pearson Education, 2010.
[8] J. Zhao, Z. Yang, L. Zhang, X. Lian, D. Yang, and X. Tan, “DRMiner:

Extracting latent design rationale from Jira issue logs,” in Proceedings
of the 39th IEEE/ACM International Conference on Automated Software
Engineering, 2024, pp. 468–480.

[9] M. Lester and J. E. Burge, “Identifying design rationale using ant colony
optimization,” in Design Computing and Cognition’18. Springer, 2019,
pp. 537–554.

[10] B. Rogers, Y. Qiao, J. Gung, T. Mathur, and J. E. Burge, “Using text
mining techniques to extract rationale from existing documentation,” in
Design computing and cognition’14. Springer, 2015, pp. 457–474.

[11] Authors, “Replication package,” https://zenodo.org/records/14176549.
[12] A. Kleebaum, B. Paech, J. O. Johanssen, and B. Bruegge, “Continuous

rationale identification in issue tracking and version control systems,”
2021.

https://doi.org/10.1145/3510003.3510205
https://zenodo.org/records/14176549

	Introduction
	Background
	The OOM-Killer dataset
	Rationale Analyses
	Rationale Extractors

	CoMRAT Design, Implementation and usage
	CoMRAT Module Analyzer
	CoMRAT Commit Message Analyzer
	Limitations
	Installation and local execution
	Potential Uses

	Preliminary Evaluation
	Module Analyzer
	Commit Message Analyzer

	Related Work
	Conclusion
	References

